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Heat and mass transport in the bulk of a suspension or fixed bed in the limit of high 
Peclet number is controlled by hydrodynamic diffusion. This hydrodynamic diffusion 
is caused by the stochastic velocity field induced by the randomly distributed particles. 
However, the no-slip boundary conditions require that the hydrodynamic diffusivity 
vanish at boundaries of the medium. Thus, molecular diffusion must aid the transport 
in a thin boundary layer near the solid boundary. Quantitative results are derived for 
the hydrodynamic diffusivity, boundary layer thickness, and net resistance to transport 
across a dilute fixed fibrous bed in the direction transverse to the mean flow. A scaling 
analysis is presented for transport in the direction of the gradient of the mean velocity 
in a sheared suspension of neutrally buoyant spheres. This scaling analysis is able to 
explain the qualitative variations of the transport resistance with the PCclet number 
and the ratio of the suspension thickness to the particle radius. 

1. Introduction 
The rate of heat and mass transfer across a fixed bed can be enhanced greatly by fluid 

flow. A tracer particle passing through the medium will experience a stochastic flow 
resulting from the disturbances produced by the randomly positioned fixed bed 
particles. Thus, when the Peclet number, Pe = U [ / D ,  is asymptotically large, one 
might expect that the molecular diffusivity of mass or heat, D ,  will play no role in 
transport. Here, U is the mean velocity through the bed and [ is a length scale 
characteristic of the microstructure, i.e. the particle radius in a concentrated packed 
bed or the Brinkman screening length in a dilute fixed bed. If the effective diffusivity 
D* that relates the mean flux of mass across the bed to the gradient of the mean 
concentration is assumed to be independent of D and inertial effects are negligible, then 
dimensional analysis implies that D* = d(q5) U t ,  where d is a dimensionless function of 
the volume fraction q5 and microstructure of the bed. (In this paper we will use D* to 
refer to the hydrodynamic diffusivity transverse to the flow and will restrict our 
attention to the transverse component of the effective diffusivity tensor.) This scaling 
analysis has been confirmed by theoretical calculations for dilute fixed beds of spheres 
(Koch & Brady 1985) and fibres (Koch & Brady 1986) and is in accord with 
experimental studies of transverse diffusion within a packed bed (Fried & Combarnous 
1971). 

However, it has been found that the heat transfer from a solid boundary into a 
packed bed is modelled more accurately if the hydrodynamic diffusivity of heat is not 
treated as a constant but is allowed to vary with separation from the wall (Cheng & 
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Zhu 1987). This variation may be expected to occur since the hydrodynamic diffusion 
arises from fluid velocity disturbances that must vanish at the solid boundary. 

An analysis based on the method of averaged equations will be presented in 92 to 
elucidate the dependence of the hydrodynamic diffusivity on the distance from the wall 
in a fixed bed. Quantitative results will be obtained for transport across a dilute 
isotropic fixed fibrous bed in $2.2. However, the scaling analysis in $2.1 is also 
applicable to packed beds. 

Hydrodynamic diffusion of heat and mass also occurs in free suspensions. A, 
conceptually simple example is the simple shear flow of a suspension of neutrally 
buoyant spherical particles. If the Peclet number, Pe, = ya2/D,  based on the shear rate 
y ,  the sphere radius a and the molecular diffusivity D, is asymptotically large, we may 
expect that the dispersion will be controlled by the stochastic hydrodynamic flow and 
will be independent of the molecular diffusivity. If the effective diffusivity in the bulk 
of the suspension is independent of the molecular diffusivity and inertial effects are 
negligible, then D* = a2yd2($), where d2 is a dimensionless function of the particle 
volume fraction. The same scaling may be expected to apply to dispersion of the solid 
spheres themselves as to a fluid-phase tracer, albeit with a different function d,($). 
While experimental studies (Leighton & Acrivos 1987) of the self-diffusion of a marked 
tracer sphere in the midst of a suspension show clear evidence for the purely 
hydrodynamic scaling, the results for fluid-phase tracers obtained by Wang & Keller 
(1985) and Sohn & Chen (1981) are more complex. The latter studies measure the rate 
of mass or heat transfer from one cylinder of a Couette device to the other, yielding 
a heat or mass transfer coefficient h. It is found that the Nusselt number Nu = hH/D 
grows slightly slower than linearly with Pe, and that the results depend on the ratio of 
the gap thickness between the two cylinders of the Couette device, H, to the particle 
radius, a. In $3, we will present a scaling analysis for hydrodynamic diffusion in the 
vicinity of a solid boundary to a sheared suspension. It will be seen that the qualitative 
dependence of Nu on Pe, and H / a  can be explained in terms of the resistance to 
transport through a boundary layer in which molecular diffusion is important. 

The problems of transport across a fixed bed or particulate suspension are similar 
to heat and mass transport across a turbulent flow in the sense that the stochastic fluid 
flow enhances the transport in the bulk of the medium. This enhancement decays with 
proximity to a solid boundary in all three cases as a result of the no-slip boundary 
condition at the surface. Thus, molecular diffusion must aid the transport across a 
boundary layer near the surface. This phenomenon has long been appreciated for 
applications to heat transfer in turbulent flow (Eckert & Drake 1972), but has not been 
studied extensively for fixed bed and suspension flows. Of course, the nature of the 
stochastic flow arising in suspensions and fixed beds is quite different from a turbulent 
flow and we must analyse this flow and its influence on heat and mass transfer to 
predict the overall transport rate. 

2. Dispersion in a dilute isotropic fibrous bed 
2.1. Scaling analysis 

Koch & Brady (1986) showed that the transverse hydrodynamic diffusion coefficient in 
the bulk of a dilute isotropic fibre bed in the limit of high Ptclet number is given by 
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Here, y is the distance from the wall, a is the radius of the fibre and [ is the Brinkman 
screening distance, which may be obtained from the following implicit relationship 
(Koch & Brady 1986; Spielman & Goren 1968; Howells 1974): 

where C = 0.577216 is Euler's constant. Equation (1) applies at separations y from the 
boundary of the bed that are large compared with the screening distance 5, so that the 
wall has a negligible effect on the fluid velocity field. (Equation (1) differs from the 
result in Koch & Brady (1986) by a factor of 2/n, owing to an algebraic error in the 
previous analysis.) 

The order of magnitude of the bulk hydrodynamic diffusivity given by (1) may be 
rationalized through the following scaling analysis. D* may be estimated as the 
product of the rate R at which a tracer molecule undergoes interactions with fibres and 
the square of the displacement, Ay, experienced by the tracer as a result of each 
interaction : 

The fluid velocity disturbance, ( ~ k ) ~ ,  caused by a fibre begins to decay only at large 
distances from the fibre and is O(,f/,u) = O( U/ln( 1 /$)) at separations from the fibre 
comparable with the screening length 6. Here,fis the force per unit length that the fibre 
exerts on the fluid, ,u the fluid viscosity, u the fluid velocity, u' = u-  U the deviation 
from the mean velocity, and ( ), indicates an ensemble average with the position and 
orientation of one fibre held fixed. We will use a Cartesian coordinate system with the 
x-axis parallel to the direction of the mean velocity and the y-axis perpendicular to 
both the wall and the mean flow. A tracer experiences the velocity disturbance 
produced by a fibre during the time 7 = €JU required for it to be convected by the mean 
flow through the interaction volume surrounding the fibre. Thus, Ay =f i / ( , uU) .  The 
number of fibres within an O(<) distance of the tracer at any given time is n t 2  = O(ln 
(1 /$)), where n = #/(na2) is the number of fibres whose axes cut a unit cross-sectional 
area. Since the tracer interacts with each fibre for a time 7, the rate of interaction is 
R = O(@<U/a'). Substituting these scalings into (3) gives 

D* = O(R(Ay)'). (3) 

The Brinkman screening distance is defined in terms of the body force exerted by the 
fibres on the fluid, i.e. n f =  ,uU/<'. Using this relationship to eliminateffrom (4) gives 

D; = O ( g ) ,  ( 5 )  

in agreement with (1). 
Now let us consider the scaling of D* at positions close to the wall y 4 <. The 

unconditional ensemble-average fluid velocity, (u,), is equal to U far from the wall, i.e. 
for y 9 6, and goes to zero at the no-slip solid boundary to the bed. Thus, the average 
shear rate at the wall is ( y )  = a(u,)/c?y = O(U/iJ and the average velocity near the 
wall is (u,) = ( y )y  = O(Uy/[ ) .  The correlation time, defined as the time for which a 
tracer particle is within an O(<) distance of a fibre, is 7 = O ( [ / ( u z ) )  = O(c2/ (Uy)) .  

The velocity of the tracer at a position y 4 < is influenced by all of the fibres within 
an O(<) distance from the wall. Such fibres have the samef= O(,uU/ln (I/$)) force per 
unit length as fibres in the bulk of the bed to leading order, with an O(,uUU/ln2(1/$)) 
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correction to this force caused by wall reflections. The velocity disturbance caused by 
the fibres extends over an O ( [ )  distance. The rate of interactions of the tracer with the 
fibres is R = O(nC2/7) = O(q5Uy/a2). The no-slip boundary condition together with the 
continuity equation for an incompressible fluid implies that the normal component of 
the fluid velocity disturbance caused by a fibre approaches zero quadratically as 
y+O, i.e. (u;)~ = O(jy2/(,&))). The change in the tracer’s position due to each inter- 
action is Ay = O ( ( U & ) ~ ~ )  = O(jy/(,uU)) = O(ya2/(c2q5)). From equation (2) it may be 
seen that A y / y  = U( 1 /In (1 /$)) 4 1 in a very dilute fibrous bed. This small displacement 
is a requirement for treating the transport in terms of a local relationship between the 
mean flux and concentration gradient occurring at y .  

Substituting the scalings derived above into (3) ,  the hydrodynamic diffusivity near 
the wall is found to be 

where dl = d;(9n2/3200) is a dimensionless O(1) constant. Since the hydrodynamic 
diffusivity approaches zero as y+O, there is a boundary layer of thickness S = 
5 ( D / D 3 1 / 3  in which molecular diffusion is important even at high PCclet numbers. 

In deriving (6), we have assumed that the largest contribution to the hydrodynamic 
diffusivity of a tracer located at y comes from fibres that are an O(5) distance from the 
wall. It may be shown from a similar scaling argument that the contribution to the 
diffusivity coming from fibres an O(y)  distance from the wall is asymptotically small. 
The velocity disturbance produced by these fibres is screened at an O(y)  radial 
separation from the fibre due to the fibre-wall interaction. As a result, the force per unit 
length on the fibre is O(,u(u,)/ln(y/a)) = O(,uUy/[[ln(y/a)]). The velocity dis- 
turbance produced by the fibre is ( u ; ) ~  = O(Uy/[[In(y/a)]). The tracer interacts with 
a fibre for a time y/(u,)  = [ / U  and, at any given time, it is interacting with ny2 near- 
wall fibres. Thus, the rate of interaction is R = n y 2 / ~  = q5yzU/(&2) and the 
displacement per interaction is Ay = (u&);7 = O(y/ln(y/a)). The diffusivity due to 
near-wall fibres is found, using (3) ,  to be O(Uy4$/(6a2 [ln (y/a)] ’) ,  which is smaller than 
the contribution of the more distant fibres accounted for in our scaling result (6) by a 

We have found that the hydrodynamic diffusivity decreases in proportion to y3  as the 
distance of the tracer from the wall decreases. The higher resistance to mass transport 
across the boundary layer leads to a concentration slip near the surface. For example, 
let us consider a situation in which the mean concentration field (c) is steady and is 
a function of y only. In this case, the flux Q is independent of y and superimposing the 
fluxes caused by the hydrodynamic diffusivity (6) and the molecular diffusivity D, we 
have 

factor of Y / ( t  [In (f;la)/ln (y/a>l”)- 

Integrating (7), one obtains the concentration slip : 

We can define the mass transfer coefficient as 
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Assuming that the primary resistances to mass transfer come from the boundary layers 
( y  < 6 or H -  1’ 4 5)  and the bulk of the bed ( y  % 6 and H - y  % 5):  

where Q/DZ is the concentration gradient in the bulk of the bed. Using (8), (9) and 
(lo), the Nusselt number, Nu = hH/D,  is determined to be 

The concentration slip can only be neglected compared with the O(Q&H/( Uu’)) 
concentration variation associated with the transport resistance, (l), across the bulk of 
the fibre bed when the thickness H of the bed is very large, i.e. H / a  9 (Pea/$)’//”. Here 
Pea = Ua/D is the PCclet number based on the fibre radius a. It is interesting to note 
that the criterion for neglecting the concentration slip associated with the molecular- 
diffusion boundary layer becomes increasingly stringent as the PCclet number grows. 
Thus, a diffusion process that occurs purely in the bulk of the bed becomes increasingly 
dominated by hydrodynamic diffusion with growing Peclet number, but the transport 
from one boundary of the bed to the other shows the weakest dependence on molecular 
diffusion at an intermediate Peclet number. 

The scaling analysis performed here may be applied to a concentrated packed bed 
of spheres of volume fraction $, provided that the screening length f is replaced by the 
particle radius a to reflect the fact that a is the length scale over which the fluid velocity 
field varies in a concentrated bed. It should be noted, however, that the characteristic 
displacement, AJJ, experienced by a tracer as a result of its interaction with each fixed 
sphere is O ( y )  for y < a .  Thus, one would need to adopt a spatially non-local 
description of the hydrodynamic diffusion process to obtain quantitative results for a 
packed bed. Spatially non-local transport has been discussed in other contexts by Koch 
& Brady (1987) and Shaqfeh (1988). 

2.2. Derivation of’ the hydrodynamic difusivity 
Now, we turn to a quantitative determination of the hydrodynamic diffusivity near the 
boundary to an isotropic fixed fibre bed in the dilute limit, #J 6 1. The concentration 
field c of a chemical tracer in the fluid phase is governed by the equation 

(12) 
c?C 

Zt 
- + V * ( u c - D V c )  = 0. 

We will neglect the effects of the boundary conditions on the surface of the fibres on 
the concentration field and simply represent the velocity disturbance of each fibre in 
terms of a line of point forces. It was shown by Koch & Brady (1986) that these 
approximations give the correct leading behaviour of the transverse effective diffusivity 
in the limit of high Peclet number. The ensemble average of (12) is 

a<c> - - - + V * [ ( u )  (c)-(u’c’) - D V ( c ) ]  = 0, 
at (13) 

where u’ = u - ( u )  and c’ = c -- (c). The ensemble average ( ) is an average over the 
positions and orientations of all of the fibres. We will consider an average concentration 
field that is independent of time and varies only in the y-direction. The mean velocity 
( u )  is a unidirectional flow in the x-direction. Therefore, (13) reduces to 
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It will be seen that the average convective flux can be written as 

Integrating (14) once using (15) gives 

where Q is the constant flux across the bed. D* varies on an O(y)  length scale, cf. (6) ,  
and therefore the gradient of the average concentration, d(c)/dy, also varies on the 
length scale y .  

The mean convective flux in (15) can be obtained by averaging the conditionally 
averaged flux over the fibre orientation and position: 

(ukc ’ )  = - D * S  dY = /de%Jdr,(u;d),(rlr,,e). 

Here, the factor $e,/(xzu2) is the number of fibres per unit area with orientation e 
intersecting the wall at rw. The conditional average ( ), is an average over the positions 
and orientations of all fibres except the one at rw with orientation e. By neglecting the 
effects of two-fibre correlations, we can approximate (uk c’), z ( ~ k ) ~ ( c ‘ ) ~ .  The error 
incurred in making this approximation can be determined through a scaling argument 
analogous to that presented in 82.1. The two-fibre correlations result from fibre-fibre 
hydrodynamic reflections that lead to tracer displacements O( 1 /In( I/$)) smaller than 
the displacements caused by a single fibre. The rate of two-fibre interactions is 
O(ln( 1 /$)) larger than the rate of single-fibre interactions. Thus, using (3), we find that 
the contributions of two-fibre correlations to D* are O(l/ln(l/$)) smaller than the 
leading contribution. 

We must now determine the concentration disturbance (c’), produced by a fibre. 
Taking the conditional average of (12) at steady state and subtracting (13) gives 

V.[(U) (C’)~+(U’~~(~)+(U’)~(C’)~+(U’’C’’)~-DV(C’)~] = 0, (1 8) 
where u” = u- (u ) ,  and c” = c- (c),. The product ( U ’ ) ~ ( C ’ ) ,  is O(l/ln(l/$)) smaller 
than (u ) (c ’ ) ,  and will be neglected. The order of magnitude of (~”c”), may be 
estimated by making a self-consistent approximation in which this term is modelled in 
the same way as the term ( U ’ C ’ ) ~  that appears in the unconditionally averaged mass 
conservation equation, i.e. 

where D* is the hydrodynamic diffusivity tensor whose yy-component has been 
denoted by D*. Using (19), and taking account of the facts that the mean concentration 
varies only in the y-direction and the mean velocity has a non-zero component only in 
the x-direction, equation (18) becomes 

(u”c”), NN - D * . V ( c ’ ) , ,  (19) 

The diffusion terms in (20) may be neglected if the diffusion results in a small change 
of the tracer’s y-coordinate in the interaction time 7 = t 2 / ( U y ) .  The displacement of 
the tracer due to hydrodynamic diffusion is (D*7)li2 = O(y/ln1/2 (l/$)), where use has 
been made of (6) and (2) in obtaining the latter estimate. Thus, the hydrodynamic 
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diffusivity always leads to a displacement of the tracer during an interaction that is 
small compared with its separation from the wall. The molecular diffusivity may lead 
to a large relative displacement of the tracer at very small separations from the wall 
where D 9 D*. However, we will only be interested in calculating D* in the region 
where it makes a significant contribution to the mean flux. Since the concentration 
gradient is nearly constant over the distances, Ay = O(y/ln(l/$)), through which a 
tracer is transported during its interaction with a fibre, the mean concentration 
gradient in (20) may be approximated as a constant and integrating this equation gives 

Combining (21) with (17) gives 

(22) 
Integrating (22) by parts with respect to x,, we obtain 

It is convenient to express the diffusivity in terms of the Fourier transform of the 
velocity field with respect to the x- and z-coordinates. Using the product theorem, (23) 
may be written as 

where A denotes a Fourier transform with respect to x and z and k,  and k,  are the x- and 
z-components of the wavenumber. In writing (24), we have made use of the 
translational invariance in the x- and z-directions, i.e. (u;)~ is only a function of the 
position of the tracer relative to the point r,  of intersection of the fibre with the wall. 

To complete the determination of the diffusivity, we must find the mean velocity as 
well as the conditional average velocity disturbance caused by a fibre. We assume that 
the Reynolds number Re = p@/p is very small, so that the fluid motion is governed 
by the Stokes equations. The ensemble average of the equations of motion can be 
approximated as Brinkman’s equations 

where the Brinkman screening length f is given by (2). The term (,u/t2) ( u )  arises due 
to the force per unit volume that the fibres exert on the fluid. In using (25) with (2), we 
have neglected the effect of interactions with the wall on the force per unit length 
exerted by a fibre. The dominant effect of the fibres on ( u )  ( y )  comes from fibres with 
separations of O ( t )  or larger even when y 4 f .  (In fact, (25) and (26) could be 
approximated by the Stokes equations for y 4 f . )  Thus, the neglect of wall reflections 
results in relative errors of O( 1 /In (cia)). The force dipole and higher-order multipoles 
distributed along the fibre axis have also been neglected. The effect of these terms is 
small, O(a2 / f2 )  for a velocity field that is varying on a length scale 5. These estimates 
indicate that wall reflections and higher-order multipoles can be neglected at 
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asymptotically small volume fractions for which [ / a  9 1. An assessment of the 
accuracy of Brinkman’s equation near the boundaries between fininte-volume-fraction 
periodic fixed beds and pure fluid regions has been given by Larson & Higdon (1986, 
1987) and Sangani & Behl(l989). 

We consider a unidirectional average flow field in the x-direction driven by it 
constant pressure gradient V(p) = -,uU/t2ee,. The solution of (25) driven by this 
pressure field and satisfying a no-slip boundary condition at the solid surface y = 0 is 

(27;) 
The conditional average of the equations of motion with one fibre’s position andl 

orientation held fixed takes a form analogous to (25) and (26) with errors that are small 
at low volume fractions. In a dilute fixed bed, interparticle interactions are onlj 
important at O(6) inter-fibre separations where the conditional average velocity is 
slowly varying and the effects of the surrounding fibres can be modelled in terms of a 
body force. If we denote the deviations of the pressure and velocity fields from the 
average by p’ = p - (p) and u’ = u - (u ) ,  then we can write equations for the velocity 
and pressure disturbance caused by a fibre as 

- P V “ ~ ’ > 1 + ( P / t 2 )  (U’>,+V(P’)l = 1: ds(f) ,(r,+se)6(r-r,-se),  (28) 

v *  (u’) ,  = 0, (29) 
The force per unit length acting on the fibre, (f)l, is, cf. Koch & Brady (1986) and 
Spielman & Goren (1 968), 

In writing (30), we have neglected the effect of reflections with the wall on the force per 
unit length, leading to O( l/ln (Ma)) relative errors. 

The velocity disturbance caused by a fibre in the presence of the plane solid 
boundary can be written as the sum of the velocity produced by a fibre in an 
unbounded fluid, uu, and a homogeneous solution uh of Brinkman’s equations chosen 
to satisfy the boundary conditions on the solid boundary, i.e. 

(u’) ,  = U U + U h .  (31) 
The unbounded velocity disturbance can be written in terms of an integral over the 

fibre length of the force per unit length acting on the fibre times the Green’s function 
J :  

uu = ~ ~ ~ d s ( f ) , ( s e , ) . J ( r l r , + s e ) .  

The fundamental solution of Brinkman’s equation, J, satisfies 
- , I A V ~ J + ( , L L / ~ ~ )  J + V P  = /8(r-rw-se), 

V * J = O ,  
(33) 
(34) 

where J. f and P-fare the velocity and pressure fields due to a point forcefexerted on 
the fluid at r,  + se. The solution for J can be obtained by taking the three-dimensional 
Fourier transform of (33) and (34) to give 

exp [27cik-(r-r,-se)], /- kk/k2 
(3 5 )  
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where k = (kz ,  k,, k,) is the three-dimensional Fourier transform variable. To 
determine the diffusivity from (28), we require the two-dimensional Fourier transform 
of the y-component of the velocity disturbance evaluated at k,  = 0. Thus, we need to 
consider the two-dimensional Fourier transforms of Jzy, J,,, and Jzy .  It may be seen 
from (35) that .fz,(k, = 0) = 0. Performing the inverse Fourier transform of the other 
two components with respect to k ,  yields 

exP~-PlY-~e, l l+l~lexP[- l~lIv-~e, l l  

where a = 2nk, (, p = (a2 + l)li2, and s and y in these and all subsequent expressions 
in this section are non-dimensionalized by 5. 

Substituting (36), (37), (27) and (30) into the Fourier transform of (32) and 
integrating with respect to s gives 

where 

9 = ez/ey, and the coefficients hi are given by 
BU = [h, +b,exp(-y)lexp(-iavy)+b,exp(-py)+b,exp(-laly), (39) 

To satisfy the no-slip conditions on the boundary to the fixed bed, we must add to 
u" a solution of the homogeneous Brinkman equations, uh. The homogeneous pressure 
p h  and velocity uh satisfy equations equivalent to (25) and (26). Combining (25) and 
(26), it can be seen that p h  satisfies Laplace's equation, which upon Fourier 
transforming with respect to x and z gives 

where K = (kt+k,2)'/2. The solution of (44) that decays at large separations from the 
wall is 

- 3 4  pa2 Ue, p" = exp (- 2nKy). 
1 0 ~ 4 6 4  (45) 
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The Fourier transform of the y-component of the momentum conservation equation 
is 

The solutions of (46) that decay at large y are 

- 3xa2 Up, 
5q5L52 Bh, zii(k, = 0) = 

where 
Bh = A, exp (- Ialy) + A 2  exp (-/3y). 

(47) 

(48) 

The constants A, and A, may be evaluated by applying the no-slip boundary 
conditions : 

(zij), = 0 at y =  0, (49) 
d(2il) 

dY 
y l = O  at y = O .  

The second condition, (50), can be derived from the conditions of zero tangential 
velocity, ( u ; ) ~  = (u;), = 0 and the Fourier transform of the mass conservation 
equation. The constants are found to be 

where 
q2 = bl+b2+b3+b4, 

q1 = -iayb,-/3b2-la(b3-(1 +iay)b4. 
(53) 
(54) 

Substituting (31), (38) and (47) into (24), defining a spherical coordinate system in 
which ey = sin 8 sin @, e, = cos 0, and e, = sin Bcos @, and integrating over 8 gives the 
following expression for the hydrodynamic diffusivity : 

9 Ua2 J = - D Z J ,  4 Dt=m x2 
where 

J -  d5 daB(a)B(-a), 1: r 
B = B" + Bh, 5 = cos @, and y2 = g2/(l -5'). 

The integrals in (56) were evaluated numerically to determine the hydrodynamic 
diffusivity. The diffusivity normalized by its value, D z ,  at large separations from the 
wall is plotted as a function of the non-dimensional separation y in figure 1. For 
y < 1, D*/DZ = 0 . 2 9 ~ ~  in agreement with the scaling prediction (6) with 4 = 0.29 or 
d, = 0.008 05; this asymptote is plotted as the dashed line in figure 1. Owing to the long- 
range nature of the velocity perturbations produced by long straight fibres (even in the 
presence of Brinkman screening), the effect of the wall on the diffusivity decays slowly 
and D * / D z  z 1 - 1.37/y for y b 1. 

In order to determine the concentration decrease, (c) ( y  = H )  - (c) (y = 0), 
between two walls of a fixed bed, we require an approximation, D,*(y), for the 
hydrodynamic diffusivity that takes account of the influence of both walls. At large 
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FIGURE I .  The ratio of the hydrodynamic diffusivity in an isotropic fixed-fibre bed, D*, to its value 
at asymptotically large separations from the wall, DZ,  is plotted as a function of the distance, y ,  from 
the wall non-dimensionalized with the screening length. The dashed line indicates the asymptotic 
behaviour D*/D: = 0 . 2 9 ~ ~ .  
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FIGURE 2. The Nusselt number, Nu = hH/D, for transport between two parallel walls bounding a 
fixed-fibre bed is plotted as a function of DZ/D. Results are shown for three values of the bed width 
non-dimensionalized by the screening length, H = 20, 100 and 500. The solid lines are the theoretical 
predictions (55 ) .  The dash-dot lines are the approximation (l l) ,  which only takes account of the 
boundary-layer and bulk resistances. The dashed line indicates the Nusselt number in the absence of 
boundary effects, i.e. Nu = D:/D. 

separations from both walls, one can superimpose the small decrease in diffusivity 
caused by each of the two walls. Close to either wall, the diffusivity is dominated by 
the nearby wall. Thus. a uniformly valid approximation may be obtained using D: = 
D * ( y )  D*(H-y)/D*,.  Substituting D: for the hydrodynamic diffusivity in (17), 
integrating to obtain the concentration decrease, and using (9), we obtained the results 
plotted as solid lines in figure 2. For comparison, we also present as dash-dot lines the 
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approximation, (1 l), for the Nusselt number that takes into account only the boundary 
layer and bulk resistances to mass transport. The relative error incurred in using (1 ;I) 
decays like In ( H ) / H  as the width of the bed, H ,  approaches infinity. An O( 1 / H )  error 
arises from the neglect of the added resistance associated with the attenuation of the 
diffusivity at O( 1) separations from the wall, while the O(ln ( H ) / H )  error arises frorn 
the slowly decaying O( l/y) influence of the wall on the diffusivity for y % 1. The dashed 
line in figure 2 shows the Nusselt number, Nu = DZ/D,  that would arise in the absence 
of wall effects. It may be seen that a very large bed is required to make wall effects 
negligible and the required bed size increases with increasing D Z / D  or, equivalently, 
increasing Peclet number. 

3. Dispersion in a sheared suspension of neutrally buoyant spheres 
Phenomena similar to those described above may also be expected to occur in free 

suspensions. As an example, we will consider heat or mass transfer across a sheared 
suspension of neutrally buoyant spheres. The shear is driven by two parallel solid walls 
separated by a distance H, which is large compared with the particle radius a. We are 
interested in the transport of heat or mass from one wall to the other at a statistically 
stationary state. 

It is well known from the experimental measurements of Leighton & Acrivos (1987), 
the numerical simulations of Bossis & Brady (1988) and Brady & Phung (1992), and 
a theoretical calculation of Wang, Mauri & Acrivos (1995) that the effective self-. 
diffusion coefficient for the motion of a marked non-Brownnian solid particle parallell 
to the gradient (y-) direction in a sheared suspension is proportional to ya2 as expected 
on the basis of dimensional analysis. Furthermore, the effective diffusivity is 
proportional to $2 at small solid volume fractions $. Stokes flow reversibility together 
with the fore-aft symmetry of the flow situation imply that two-particle interactions 
cannot lead to a net displacement Ay of the tracer particle. The symmetry is broken 
when the tracer particle encounters a pair of other particles and the frequency of such 
encounters is proportional to fi2. 

The same considerations will apply to the scaling of the effective diffusivity of a fluid- 
phase tracer molecule whose diffusivity is very small so that Pe, % 1. Thus, the 
hydrodynamic diffusivity far from the walls is given by 

D* = D: = d2 ya2, y % a, H -  y >> a, (57) 
where d, is a dimensionless function of volume fraction and is proportional to $ z  in the 
dilute limit, $ 4 1. It should be noted, however, that dz will differ from the 
corresponding function, d,, for hydrodynamic diffusion of solid particles because the 
solid particles are not passive tracers. 

Now let us turn to the scaling of the hydrodynamic diffusivity of a fluid-phase tracer 
molecule near the solid boundary. We will estimate the diffusivity as the product of the 
interaction rate R and the square of the tracer displacement, Ay, caused by each 
interaction, cf. (3). A tracer molecule's velocity is influenced by solid particles that are 
separated from it by a distance of O(a). These particles are swept past its position in 
a time 7 = O(y-l). An interaction with a single solid particle will not produce a net 
displacement of the tracer molecule, so at least two particles must simultaneously 
interact with the tracer to contribute to the diffusivity. Thus, R = O ( Y $ ~ )  in a dilute 
suspension and R = O(y) for $ N O(1). The no-slip boundary condition and the 
continuity equation require that the normal component, u j ,  of the velocity disturbance 
caused by the particles goes to zero quadratically as one approaches the wall, y + 0. 



Hydrodynamic diflusion near solid boundaries 43 

Thus, u; = O(yy2/a) and the net displacement is Ay = O ( u k ~ )  = O(y2/a) .  It may be 
noted that A ~ / J  = O(y2 /a2)  < 1, validating a local description of the hydrodynamic 
diffusion at small separations from the wall, y < a,  even in a concentrated suspension. 
Substituting these scalings into (9, the hydrodynamic diffusivity near the wall of a 
sheared suspension is 

where d:3 is a dimensionless function of q5 that is proportional to $' at small volume 
fractions. The hydrodynamic diffusivity will be comparable with the molecular 
diffusivity in a boundary layer of thickness c = near the wall at high PCclet 
numbers . 

Now, let us consider an average concentration field that is steady and only depends 
on the y-coordinate. The mean flux Q resulting from the combined effects of 
hydrodynamic (58) and molecular diffusion is constant : 

D" = d3 yy4/a2, y < a, ( 5 8 )  

Integrating (59) over y ,  we can obtain the concentration slip in the boundary layer: 

The concentration gradient in the bulk of the suspension is Q/B: = Q/(d,ya'). 
Provided that H / a  9 1 and c < a,  the concentration difference across the gap may be 
approximated as 

Substituting (60) and (61) into (9) yields 

( c )  ( y  = H )  - ( c )  ( y  = 0) = ~ A C S  Q H / D Z .  (61) 

1 nu - 1 
-~ 
N u  - d, Pe, i- 2IJ2H(d3 PeJ1I4 ' 

From (62), it may be seen that the heat transfer coefficient is approximately equal to 
the bulk hydrodynamic diffusivity divided by the gap thickness when H / a  + Pe;14 
% 1 and is controlled by the boundary layer resistance when Pe;'4 + H / a  + 1. 

Wang & Keller (1985) used an electrochemical technique to measure the diffusion of 
ions from one cylinder of a Couette device to the other. The gap of the Couette device 
was filled with a suspension of hardened human red blood cells, which behave 
approximately as hard spheres of radius 4.2 pm (see Zydney & Colton 1988). The gap 
of the Couette device was 460 pm, so that H / a  = 110. The ions did not permeate the 
particles. It was found that shearing the suspension gave rise to an enhancement of the 
transport that could be considered to be almost purely hydrodynamic. However, the 
growth of the Nusselt number was slightly slower than linear with shear rate and this 
might indicate small effects of boundary layer resistance. 

Sohn & Chen (1981) measured the heat transfer between the inner and outer 
cylinders of a Couette device containing a neutrally buoyant suspension of polyethylene 
spheres in a mixture of silicone oil and kerosene. The ratio of the gap thickness to the 
particle radius was only 18 in this study and the augmentation of the heat transfer 
caused by the shear and was significantly less than the augmentation of the mass 
transfer in Wang & Keller's experiment. Sohn & Chen also observed that the 
augmentation of the heat transfer due to shear was much larger with a suspension of 
smaller polystyrene spheres for which H / a  = 180 than for the large polyethylene 



44 D. L. Koch 

Nu 

FIGURE 3. The Nusselt number in a moderately dilute sheared suspension. The solid lines indicate the 
theoretical prediction (62). The squares are the experimental data of Sohn & Chen (1981) for 9 = 
0.15 and H / a  = 18 and the circles are the experiments of Wang & Keller (1985) for $ = 0.18 and H/a  
= 110. 

spheres. However, the data for the small spheres was limited to Pe, < 10. The lower 
heat transfer coefficient observed in Sohn & Chen's experiments with polyethylene 
spheres may be attributed to the increased importance of the boundary layer resistance 
for a smaller value of H/a. 

Before turning to a comparison of the theory with the experimental results, we 
should note three complicating factors that limit the quantitative significance of this 
comparison. First, our theory for simple shear flow only considers the bulk and 
boundary layer resistances to transport. It does not include effects of the hydrodynamic 
diffusion at O(a) distances from the wall, which is likely to have an effect on Nu at finite 
Pe, and H/a. Some indication of the likely size of this effect may be obtained by 
observing the accuracy of the comparable approximation in the fixed bed problem, cf. 
figure 2. Second, we have only developed a scaling analysis for the hydrodynamic 
diffusion and boundary layer resistance and have not determined the values of d&) 
and d3($). Thus, these coefficients must be treated as fitting parameters in the 
comparison with the experimental data. A more definitive test of the theory would be 
possible if numerical simulations were used to obtain one or both of these coefficients. 
Finally, the heat and mass transfer experiments differ in that heat can be carried by the 
particle phase whereas the ions cannot. (The heat capacity of the particles in Sohn & 
Chen's experiment is about 1.5 times that of the fluid.) Since the volume fraction of 
solids goes to zero in the boundary layer, this will not affect d3 but it will lead to a 
difference between the values of d, in the heat and mass transfer experiments at the 
same value of 4. In a dilute suspension, the transport of heat carried inside particles 
scales like 43 and is small compared with the O(@) transport of heat in the fluid phase. 
In practice, we will neglect the effect of the heat transport in the particle phase on d, 
even at q5 = 0.15 and 4 = 0.3. By so doing, we can determine whether the same values 
of d2 and d3 are able to explain the quite different qualitative trends observed in the heat 
and mass transfer experiments. 

The Nusselt number representing the enhancement of transport due to shearing 
motion is plotted as a function of Pe, in figures 3 and 4 for relatively dilute suspensions 
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FIGURE 4. The Nusselt number in a concentrated sheared suspension. The solid lines indicate the 
theoretical prediction (62). The squares are the experimental data of Sohn & Chen (1981) for q5 = 
0.30 and H / a  = 18 and the circles are the experiments of Wang & Keller (1985) for y5 = 0.31 and H / a  
= 110. 

q5 = 0.15-0.18 and moderately concentrated suspensions r j  = 0.3-0.31, respectively. In 
each figure, the circles represent the experimental data for mass transfer with H / a  = 
110 obtained by Wang & Keller (1985) and the squares the heat transfer experiments 
of Sohn & Chen (1981) with H j a  = 18. The solid lines in the figures are the results of 
the scaling analysis (62) with the constants chosen to give a good fit to the data. 

In the theoretical analysis, we neglected the transport through the bulk of the 
suspension caused by molecular diffusion compared with the hydrodynamic diffusion 
as the effect of molecular diffusion is small for Pe, 9 1. However, since the experiments 
were performed at moderate values of Pe,, we have interpreted h as the difference 
between the mass transfer coefficient in the sheared suspension and that in a stagnant 
suspension. The effective diffusivity of the stagnant suspension was obtained using the 
empirical correlation developed by Meredith & Tobias (1961), which has been shown 
to compare favourably with experiments and numerical simulations (see Bonnecaze & 
Brady 1991) for volume fractions and conductivity ratios comparable with those used 
in the experiments. 

The mass transfer experiments in figure 3 were conducted at a volume fraction of 
q5 = 0.18, whereas q5 = 0.15 for the heat transfer experiments. Since d2 and d, are 
predicted to be proportional to in the dilute limit, the coefficients used to model the 
heat transfer experiments were chosen to be a factor of 1.44 smaller than those used 
to model the mass transfer experiments. The coefficients for the bulk and boundary 
layer diffusivity were d, = 0.033 and d3 = 0.0003 at q5 = 0.18. The mass and heat 
transfer experiments presented in figure 4 were conducted for q5 = 0.31 and 0.30, 
respectively, and the coefficients d, = 0.055 and d, = 0.003 were used to model this 
data. 

It can be seen from the figures that the scaling result, (62), is able to explain the 
nearly linear growth of the mass transfer rate with Peclet number as well as the much 
slower growth of the heat transfer rate. The smaller ratio of gap thickness to particle 
radius and the larger PCclet numbers in the heat transfer experiments lead to a 
relatively large contribution of the boundary layer to the overall resistance to transport 
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across the gap. While the quantitative significance of the comparison is limited by the 
factors mentioned above, it is clear that the experiments support the theoretical 
prediction for the qualitative nature of the boundary layer resistance. 

The values of the bulk hydrodynamic diffusivity of a fluid-phase tracer obtained 
from our analysis of the experiments of Wang & Keller (1985) and Sohn & Chen (1981) 
are comparable with the values of the self-diffusivity of solid spheres measured by 
Leighton & Acrivos (1987). At q4 = 0.18, we obtained for the fluid-phase diffusivity 
d, = DZ/(ya2)  = 0.033, while Leighton & Acrivos measured d, = 0.021. At the higher 
volume fraction, q4 = 0.31, the fluid-phase diffusion coefficient is d, = 0.055, while the 
solid-particle coefficient is d, = 0.086 (Leighton & Acrivos 1987). From this 
comparison, it appears that the fluid-phase diffusivity grows more slowly with solid 
concentration than does the solid-particle diffusivity. However, a more definitive: 
determination of the relative size of the particle and fluid diffusivities could be made 
if both were measured in the same physical system or in the same numerical simulation. 

4. Conclusion 
In this paper, we have seen that the standard picture of purely hydrodynamic 

diffusion in fixed beds and suspensions at high Peclet numbers must be modified when 
we deal with heat or mass transfer from solid surfaces into the suspension or fixed bed. 
Whereas the random flow field is sufficient to account for the transport in the bulk of 
the suspension, molecular diffusion must play a role in transporting heat or mass 
through the nearly stagnant fluid adjacent to the wall. This principle has been 
illustrated with two specific examples. 

The first case of dispersion into a dilute isotropic fixed fibrous medium has the 
advantage that it is amenable to analytical treatment. Using the method of averaged 
equations, we have derived the transverse hydrodynamic diffusivity as a function of the 
distance away from a solid boundary to the fibrous medium (figure 1). This result was 
then used to determine the net resistance to mass transfer across the bed over a range 
of Peclet numbers and fixed-bed sizes (figure 2). The mass transfer coefficient is nearly 
equal to DZ/H for sufficiently large beds at intermediate Peclet numbers, H / a  % 
(Pe,/4)”/” + 1. At very large PCclet numbers, (Pe,/4)’/’” + H/a ,  the mass transfer 
resistance is controlled by a boundary layer near the solid surface and h = 33/2(Dz 
D 2 ) ) ’ / / ” / ( 4 x ~ ) .  

The second case considered is that of heat and mass transport in the direction of the 
gradient of the mean velocity in a sheared suspension of neutrally buoyant spheres. 
This case is interesting because of the experimental data available over a range of gap 
thicknesses H / a  and Ptclet numbers. The mass transfer in a dilute sheared suspension 
results from an interaction of a pair of particles near a solid boundary with the fluid- 
phase tracer. Owing to the complexity of this problem, only scaling results were 
obtained for the diffusivity in a sheared suspension and the coefficients d, and d3 were 
determined from the experimental data. The scaling analysis is able to explain the 
qualitative trends observed in the experiments. In particular, the Nusselt number is 
observed to grow nearly linearly with Pe, for moderate values of Pe, and large H / a  
= 110. However, the growth of Nu is much slower for the smaller value of H / a  = 18, 
especially at the largest values of Pe,. These trends are explained by the theory in terms 
of an increasing importance of the boundary layer resistance with increasing Pe, and 
decreasing H/a.  

A more quantitative test of the theory for transport into sheared suspension could 
be obtained by using numerical simulations to predict the hydrodynamic fluid-phase 
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diffusivity. In addition, it would be desirable to have a single experimental investigation 
that covers a wide range of H / a  without altering the physical properties of the particles 
and the method of measurement. 
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